Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
Sci Rep ; 11(1): 14794, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285326

RESUMO

Force enhancement is one kind of myogenic spontaneous fasciculation in lengthening preload striated muscles. In cardiac muscle, the role of this biomechanical event is not well established. The physiological passive property is an essential part for maintaining normal diastole in the heart. In excessive preload heart, force enhancement relative erratic passive properties may cause muscle decompensating, implicate in the development of diastolic dysfunction. In this study, the force enhancement occurrence in mouse cardiac papillary muscle was evaluated by a microstepping stretch method. The intracellular Ca2+ redistribution during occurrence of force enhancement was monitored in real-time by a Flou-3 (2 mM) indicator. The force enhancement amplitude, the enhancement of the prolongation time, and the tension-time integral were analyzed by myography. The results indicated that the force enhancement occurred immediately after active stretching and was rapidly enhanced during sustained static stretch. The presence of the force and the increase in the amplitude synchronized with the acquisition and immediate transfer of Ca2+ to adjacent fibres. In highly preloaded fibres, the enhancement exceeded the maximum passive tension (from 4.49 ± 0.43 N/mm2 to 6.20 ± 0.51 N/mm2). The occurrence of force enhancement were unstable in each static stretch. The increased enhancement amplitude combined with the reduced prolongation time to induce a reduction in the tension-time integral. We concluded that intracellular Ca2+-synchronized force enhancement is one kind of interruption event in excessive preload cardiac muscle. During the cardiac muscle in its passive relaxation period, the occurrence of this interruption affected the rhythmic stability of the cardiac relaxation cycle.


Assuntos
Venenos de Cnidários/farmacologia , Fasciculação/patologia , Músculos Papilares/patologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Fasciculação/metabolismo , Fasciculação/fisiopatologia , Masculino , Camundongos , Contração Miocárdica , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia
2.
Arch Toxicol ; 95(7): 2497-2505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031697

RESUMO

Cannabis use is associated with known cardiovascular side effects such as cardiac arrhythmias or even sudden cardiac death. The mechanisms behind these adverse effects are unknown. The aim of the present work was to study the cellular cardiac electrophysiological effects of cannabidiol (CBD) on action potentials and several transmembrane potassium currents, such as the rapid (IKr) and slow (IKs) delayed rectifier, the transient outward (Ito) and inward rectifier (IK1) potassium currents in rabbit and dog cardiac preparations. CBD increased action potential duration (APD) significantly in both rabbit (from 211.7 ± 11.2. to 224.6 ± 11.4 ms, n = 8) and dog (from 215.2 ± 9.0 to 231.7 ± 4.7 ms, n = 6) ventricular papillary muscle at 5 µM concentration. CBD decreased IKr, IKs and Ito (only in dog) significantly with corresponding estimated EC50 values of 4.9, 3.1 and 5 µM, respectively, without changing IK1. Although the EC50 value of CBD was found to be higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that potassium channel inhibition by lengthening cardiac repolarization might have a role in the possible proarrhythmic side effects of cannabinoids in situations where CBD metabolism and/or the repolarization reserve is impaired.


Assuntos
Canabidiol , Potássio , Potenciais de Ação , Animais , Canabidiol/toxicidade , Cães , Ventrículos do Coração , Músculos Papilares/metabolismo , Potássio/metabolismo , Coelhos
3.
Sci Rep ; 10(1): 16079, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999428

RESUMO

Cannabis use is associated with cardiovascular adverse effects ranging from arrhythmias to sudden cardiac death. The exact mechanism of action behind these activities is unknown. The aim of our work was to study the effect of cannabidiol (CBD), tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol on cellular cardiac electrophysiological properties including ECG parameters, action potentials, hERG and IKr ion channels in HEK cell line and in rabbit and guinea pig cardiac preparations. CBD increased action potential duration in rabbit and guinea pig right ventricular papillary muscle at lower concentrations (1 µM, 2.5 µM and 5 µM) but did not significantly change it at 10 µM. CBD at high concentration (10 µM) decreased inward late sodium and L-type calcium currents as well. CBD inhibited hERG potassium channels with an IC50 value of 2.07 µM at room temperature and delayed rectifier potassium current with 6.5 µM at 37 °C, respectively. The frequency corrected QT interval (QTc) was significantly lengthened in anaesthetized guinea pig without significantly changing other ECG parameters. Although the IC50 value of CBD was higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that hERG and potassium channel inhibition might have a role in the possible proarrhythmic adverse effects of cannabinoids in situations where metabolism of CBD impaired and/or the repolarization reserve is weakened.


Assuntos
Canabidiol/farmacologia , Canal de Potássio ERG1/antagonistas & inibidores , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canal de Potássio ERG1/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Cobaias , Células HEK293 , Humanos , Técnicas In Vitro , Técnicas de Patch-Clamp , Coelhos
4.
FEBS J ; 287(18): 3989-4004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32034976

RESUMO

In this study, we focus on the molecular mechanisms associated with the A57G (Ala57-to-Gly57) mutation in myosin essential light chains (ELCs), found to cause hypertrophic cardiomyopathy (HCM) in humans and in mice. Specifically, we studied the effects of A57G on the super-relaxed (SRX) state of myosin that may contribute to the hypercontractile cross-bridge behavior and ultimately lead to pathological cardiac remodeling in transgenic Tg-A57G mice. The disease model was compared to Tg-WT mice, expressing the wild-type human ventricular ELC, and analyzed against Tg-Δ43 mice, expressing the N-terminally truncated ELC, whose hearts hypertrophy with time but do not show any abnormalities in cardiac morphology or function. Our data suggest a new role for the N terminus of cardiac ELC (N-ELC) in modulation of myosin cross-bridge function in the healthy as well as in HCM myocardium. The lack of N-ELC in Tg-Δ43 mice was found to significantly stabilize the SRX state of myosin and increase the number of myosin heads occupying a low-energy state. In agreement, Δ43 hearts showed significantly decreased ATP utilization and low actin-activated myosin ATPase compared with A57G and WT hearts. The hypercontractile activity of A57G-ELC cross-bridges was manifested by the inhibition of the SRX state, increased number of myosin heads available for interaction with actin, and higher ATPase activity. Fiber mechanics studies, echocardiography examination, and assessment of fibrosis confirmed the development of two distinct forms of cardiac remodeling in these two ELC mouse models, with pathological cardiac hypertrophy in Tg-A57G, and near physiologic cardiac growth in Tg-Δ43 animals.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mutação , Contração Miocárdica/genética , Cadeias Leves de Miosina/genética , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Humanos , Camundongos Transgênicos , Cadeias Leves de Miosina/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia
5.
Anesth Analg ; 131(3): 917-927, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32011393

RESUMO

BACKGROUND: The relative efficacies of a long- and medium-chain triglyceride (LCT/MCT) emulsion and an LCT emulsion for treatment of bupivacaine (BPV)-induced cardiac toxicity are poorly defined. METHODS: After inducing asystole by BPV, varied concentrations (1%-12%) of either LCT/MCT (Lipofundin; B. Braun, Melsungen, Germany) or LCT emulsion (Intralipid; Fresenius Kabi, Upsala, Sweden) were applied to observe the recovery of stimulated contractile responses and contractile forces in either a recirculating or washout condition for 60 minutes, using guinea pig papillary muscles. The recirculation condition was used to demonstrate BPV binding by lipid emulsion. The washout condition was used to determine whether the time-dependent recovery of contraction is due to their metabolic enhancement. Oxfenicine, an inhibitor of carnitine palmitoyltransferase I in heart mitochondria, was used to evaluate the effect of each lipid emulsion on mitochondrial metabolic inhibition by BPV. To examine the effect of the lipid emulsion alone on contractility, either lipid emulsion was examined. BPV concentrations in solution and myocardial tissues were measured. RESULTS: In the recirculating condition, LCT/MCT emulsions (2%-12%) restored regular stimulated contractile responses in all muscles. Eight percent and 12% LCT/MCT emulsions led to complete recovery of contractile forces after 30 minutes. Meanwhile, LCT emulsions (4%-12%) did not restore regular stimulated contractile responses in some muscles (6, 3, and 2 in 9 muscles each in 4%, 8%, and 12% emulsions, respectively). Partial recovery, approximately 60%, of contractile forces was observed with 8% and 12% LCT emulsions. In the washout experiments, after asystole, LCT/MCT emulsions (1%-12%) restored contractility to baseline levels earlier and greater than LCT emulsion. Partial recovery, approximately 60%, was observed with a high concentration of LCT emulsion (12%). In the oxfenicine-pretreated group, the contractile recovery was enhanced with LCT/MCT emulsion but showed no change with LCT emulsion. Contractile depression by 40% was observed with high concentrations of LCT emulsion alone (8% and 12%), whereas no depression or enhanced contraction was observed with LCT/MCT emulsion (1%-12%) alone. Both types of lipid emulsions (2%-12%) caused concentration-related reductions of tissue BPV levels; LCT/MCT emulsions reduced tissue BPV levels slightly greater than LCT emulsion in a recirculating condition. CONCLUSIONS: An LCT/MCT emulsion was more beneficial than an LCT emulsion in terms of local anesthetic-binding and metabolic enhancement for treating acute BPV toxicity. The metabolic benefit of MCT, combined with the local anesthetic-binding effect of LCT, in an LCT/MCT emulsion may improve contractile function better than an LCT emulsion in an isolated in vitro animal myocardium model.


Assuntos
Anestésicos Locais/toxicidade , Bupivacaína/toxicidade , Emulsões Gordurosas Intravenosas/administração & dosagem , Parada Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Triglicerídeos/administração & dosagem , Animais , Cardiotoxicidade , Composição de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Emulsões Gordurosas Intravenosas/química , Cobaias , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/metabolismo , Parada Cardíaca/fisiopatologia , Técnicas In Vitro , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Tempo , Triglicerídeos/química
6.
PLoS One ; 15(2): e0229278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059025

RESUMO

Multiphoton microscopy is a powerful, non-invasive technique to image biological specimens. One current limitation of multiphoton microscopy is resolution as many of the biological molecules and structures investigated by research groups are similar in size or smaller than the diffraction limit. To date, the combination of multiphoton and super-resolution imaging has proved technically challenging for biology focused laboratories to implement. Here we validate that the commercial super-resolution Airyscan detector from ZEISS, which is based on image scanning microscopy, can be integrated under warranty with a pulsed multi-photon laser to enable multiphoton microscopy with super-resolution. We demonstrate its biological application in two different imaging modalities, second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), to measure the fibre thicknesses of collagen and elastin molecules surpassing the diffraction limit by a factor of 1.7±0.3x and 1.4±0.3x respectively, in human heart and lung tissues, and 3-dimensional in vitro models. We show that enhanced resolution and signal-to-noise of SHG using the Airyscan compared to traditional GaAs detectors allows for automated and precise measurement of collagen fibres using texture analysis in biological tissues.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Coração/fisiologia , Pulmão/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Músculos Papilares/metabolismo , Sistema Respiratório/metabolismo , Humanos , Pulmão/ultraestrutura , Músculos Papilares/ultraestrutura , Sistema Respiratório/ultraestrutura
7.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991583

RESUMO

Mammalian heart valves are soft tissue assemblies with multi-scale material properties. This is because they are constructs comprising both muscle and non-contractile extracellular matrix proteins (such as collagens and proteoglycans) and transition regions where one form of tissue structure becomes another, significantly different form. The leaflets of the mitral and tricuspid valves are connected to chordae tendinae which, in turn, bind through papillary muscles to the cardiac wall of the ventricle. The transition regions between these tissue subsets are complex and diffuse. Their material composition and mechanical properties have not been previously described with both micro and nanoscopic data recorded simultaneously, as reported here. Annotating the mechanical characteristics of these tissue transitions will be of great value in developing novel implants, improving the state of the surgical simulators and advancing robot-assisted surgery. We present here developments in multi-scale methodology that produce data that can relate mechanical properties to molecular structure using scanning X-ray diffraction. We correlate these data to corresponding tissue level (macro and microscopic) stress and strain, with particular emphasis on the transition regions and present analyses to indicate points of possible failure in these tissues.


Assuntos
Cordas Tendinosas/metabolismo , Valva Mitral/metabolismo , Modelos Cardiovasculares , Músculos Papilares/metabolismo , Estresse Mecânico , Valva Tricúspide/metabolismo , Animais , Suínos , Difração de Raios X
8.
Nutrients ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443528

RESUMO

Severe food restriction (FR) impairs cardiac performance, although the causative mechanisms remain elusive. Since proteins associated with calcium handling may contribute to cardiac dysfunction, this study aimed to evaluate whether severe FR results in alterations in the expression and activity of Ca2+-handling proteins that contribute to impaired myocardial performance. Male 60-day-old Wistar-Kyoto rats were fed a control or restricted diet (50% reduction in the food consumed by the control group) for 90 days. Body weight, body fat pads, adiposity index, as well as the weights of the soleus muscle and lung, were obtained. Cardiac remodeling was assessed by morphological measures. The myocardial contractile performance was analyzed in isolated papillary muscles during the administration of extracellular Ca2+ and in the absence or presence of a sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) specific blocker. The expression of Ca2+-handling regulatory proteins was analyzed via Western Blot. Severe FR resulted in a 50% decrease in body weight and adiposity measures. Cardiac morphometry was substantially altered, as heart weights were nearly twofold lower in FR rats. Papillary muscles isolated from FR hearts displayed mechanical dysfunction, including decreased developed tension and reduced contractility and relaxation. The administration of a SERCA2a blocker led to further decrements in contractile function in FR hearts, suggesting impaired SERCA2a activity. Moreover, the FR rats presented a lower expression of L-type Ca2+ channels. Therefore, myocardial dysfunction induced by severe food restriction is associated with changes in the calcium-handling properties in rats.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Restrição Calórica , Cardiopatias/etiologia , Desnutrição/complicações , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Adiposidade , Animais , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Masculino , Desnutrição/metabolismo , Desnutrição/patologia , Desnutrição/fisiopatologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Músculos Papilares/patologia , Músculos Papilares/fisiopatologia , Ratos Endogâmicos WKY , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Redução de Peso
9.
Food Chem Toxicol ; 125: 233-241, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30634013

RESUMO

A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin. Lead intoxication led in papillary muscles to a decrease in the maximal rate of isotonic shortening for all afterloads and a decrease in the thin filament sliding velocity. Papillary muscles from lead-exposed rats displayed marked changes in most of the main characteristics of afterload contraction-relaxation cycles, but in trabeculae these changes were less pronounced. The reported changes were attenuated to some extent in rats treated with a Ca-containing bioprotector. The amount of work produced by both types of heart muscle preparations was not changed by lead. Only in papillary muscles the load-dependent relaxation index was significantly increased in the lead-treated groups. Thus subchronic lead intoxication affects the peak rate of force development and relaxation properties of cardiac muscle contracting in isotonic/physiological regimes rather than the total amount of mechanical work, which may reflect adaptive changes in the myocardial function under decreased contractility.


Assuntos
Ventrículos do Coração/metabolismo , Contração Miocárdica/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Músculos Papilares/metabolismo , Administração Oral , Animais , Cálcio/administração & dosagem , Cálcio/farmacologia , Injeções Intraperitoneais , Masculino , Compostos Organometálicos/administração & dosagem , Ratos
10.
Am J Physiol Heart Circ Physiol ; 316(2): H360-H370, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499711

RESUMO

Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.


Assuntos
Antioxidantes/farmacologia , Doxorrubicina/toxicidade , Estrogênios/farmacologia , Músculos Papilares/metabolismo , Testosterona/farmacologia , Animais , Cálcio/metabolismo , Cardiotoxicidade , Estrogênios/metabolismo , Feminino , Masculino , Contração Miocárdica , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Estresse Oxidativo , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Testosterona/metabolismo , Troponina I/metabolismo
11.
Arq. bras. cardiol ; 111(3): 400-409, Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-973754

RESUMO

Abstract Background: Caloric restriction is known to impair the cardiac function and morphology in hypertrophied hearts of spontaneously hypertensive rats (SHR); however, the influence of fasting/refeeding (RF) is unknown. Objective: To investigate the fasting/refeeding approach on myocardial remodeling and function. In addition, the current study was designed to bring information regarding the mechanisms underlying the participation of Ca2+ handling and b-adrenergic system. Methods: Sixty-day-old male SHR rats were submitted to food ad libitum (C), 50% food restriction (R50) or RF cycles for 90 days. Cardiac remodeling was assessed by ultrastructure analysis and isolated papillary muscle function. The level of significance considered was 5% (a = 0.05). Results: The RF rats presented lower cardiac atrophy than R50 in relation to C rats. The C rats increased weight gain, R50 maintained their initial body weight and RF rats increased and decreased weight during RF. The RF did not cause functional impairment because the isotonic and isometric parameters showed similar behavior to those of C. The isotonic and isometric cardiac parameters were significantly elevated in RF rats compared to R50 rats. In addition, the R50 rats had cardiac damage in relation to C for isotonic and isometric variables. While the R50 rats showed focal changes in many muscle fibers, the RF rats displayed mild alterations, such as loss or disorganization of myofibrils. Conclusion: Fasting/refeeding promotes cardiac beneficial effects and attenuates myocardial injury caused by caloric restriction in SHR rats, contributing to reduce the cardiovascular risk profile and morphological injuries. Furthermore, RF promotes mild improvement in Ca2+ handling and b-adrenergic system.


Resumo Fundamento: A restrição calórica compromete a função e a morfologia cardíacas em corações hipertrofiados de ratos espontaneamente hipertensos (SHR). No entanto, a influência de ciclo de jejum/Realimentação é desconhecida. Objetivo: Investigar o efeito de ciclos de jejum/realimentação sobre a remodelação e função miocárdica. Além disso, o presente estudo foi desenhado para avaliar os mecanismos subjacentes à participação do trânsito de cálcio (Ca+2) e sistema beta-adrenérgico. Métodos: Neste estudo, SHR machos de 60 dias de idade foram submetidos a alimento ad libitum (grupo C), 50% de restrição alimentar (grupo R50) ou ciclos de RF (grupo RF) por 90 dias. A remodelação cardíaca foi avaliada por meio da análise ultraestrutural e função do músculo papilar isolado. Adotou-se o nível de significância de 5% (a = 0,05). Resultados: Os ratos do grupo RF apresentaram menor atrofia cardíaca do que os do grupo R50 em relação aos do grupo C. Os ratos do grupo C aumentaram peso corporal, os ratos do grupo R50 mantiveram seu peso corporal inicial e os ratos do grupo RF aumentaram e reduziram seu peso durante o ciclo RF. O ciclo RF não causou comprometimento funcional, pois os parâmetros isotônicos e isométricos apresentaram comportamento similar aos dos ratos do grupo C. Os parâmetros cardíacos isotônicos e isométricos mostraram-se significativamente elevados nos ratos do grupo RF em comparação aos dos ratos do grupo R50. Além disso, os ratos do grupo R50 apresentaram dano cardíaco em comparação aos ratos do grupo C quanto às variáveis isotônicas e isométricas. Os ratos do grupo R50 apresentaram alterações focais em muitas fibras musculares, enquanto os ratos do grupo RF apresentaram leves alterações, como perda ou desorganização de miofibrilas. Conclusão: Ciclos de Jejum/Realimentação promovem efeitos benéficos cardíacos e atenuam o dano miocárdico causado por restrição calórica em SHR, contribuindo para reduzir o risco cardiovascular e os danos morfológicos. Além disso, o ciclo de jejum/realimentação promove leve melhora do trânsito do Ca2+ e do sistema beta-adrenérgico.


Assuntos
Animais , Masculino , Músculos Papilares/metabolismo , Cálcio/metabolismo , Jejum/fisiologia , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Cardiomiopatias/prevenção & controle , Músculos Papilares/patologia , Ratos Endogâmicos SHR , Fatores de Tempo , Peso Corporal/fisiologia , Cálcio/análise , Remodelação Ventricular/fisiologia , Restrição Calórica/efeitos adversos , Isoproterenol/análise , Isoproterenol/metabolismo , Contração Miocárdica , Cardiomiopatias/patologia
12.
Arq Bras Cardiol ; 111(3): 400-409, 2018 Sep.
Artigo em Inglês, Português | MEDLINE | ID: mdl-30133552

RESUMO

BACKGROUND: Caloric restriction is known to impair the cardiac function and morphology in hypertrophied hearts of spontaneously hypertensive rats (SHR); however, the influence of fasting/refeeding (RF) is unknown. OBJECTIVE: To investigate the fasting/refeeding approach on myocardial remodeling and function. In addition, the current study was designed to bring information regarding the mechanisms underlying the participation of Ca2+ handling and b-adrenergic system. METHODS: Sixty-day-old male SHR rats were submitted to food ad libitum (C), 50% food restriction (R50) or RF cycles for 90 days. Cardiac remodeling was assessed by ultrastructure analysis and isolated papillary muscle function. The level of significance considered was 5% (a = 0.05). RESULTS: The RF rats presented lower cardiac atrophy than R50 in relation to C rats. The C rats increased weight gain, R50 maintained their initial body weight and RF rats increased and decreased weight during RF. The RF did not cause functional impairment because the isotonic and isometric parameters showed similar behavior to those of C. The isotonic and isometric cardiac parameters were significantly elevated in RF rats compared to R50 rats. In addition, the R50 rats had cardiac damage in relation to C for isotonic and isometric variables. While the R50 rats showed focal changes in many muscle fibers, the RF rats displayed mild alterations, such as loss or disorganization of myofibrils. CONCLUSION: Fasting/refeeding promotes cardiac beneficial effects and attenuates myocardial injury caused by caloric restriction in SHR rats, contributing to reduce the cardiovascular risk profile and morphological injuries. Furthermore, RF promotes mild improvement in Ca2+ handling and b-adrenergic system.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Jejum/fisiologia , Músculos Papilares/metabolismo , Animais , Peso Corporal/fisiologia , Cálcio/análise , Restrição Calórica/efeitos adversos , Cardiomiopatias/patologia , Isoproterenol/análise , Isoproterenol/metabolismo , Masculino , Contração Miocárdica , Músculos Papilares/patologia , Ratos Endogâmicos SHR , Fatores de Tempo , Remodelação Ventricular/fisiologia
13.
PLoS One ; 13(7): e0200834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30028847

RESUMO

Cardiac muscle expresses three neuronal nitric oxide synthase (nNOS) splice variants: nNOSα, nNOSµ and nNOSß. The functions of these nNOS splice variants in cardiac muscle, particularly myofilament-associated nNOSß are unclear. To decipher cardiac nNOS splice variant function we investigated myofilament function and intracellular calcium and force transients in demembranated and intact papillary muscles from two lines of nNOS knockout mice. The first line (KN1) lacks nNOSα and nNOSµ. The second line (KN2) lacks active nNOSα, nNOSµ and nNOSß. Demembranated KN1 papillary muscles exhibited reduced myofilament ATPase activity (-35%) and specific force (-10%) relative to controls. Demembranated KN2 muscles exhibited a smaller decrease in myofilament ATPase activity (-21%), but a greater reduction in specific force (-26%) relative to controls. Myofilament calcium sensitivity in demembranated KN1 and KN2 papillary muscles was similar to controls. Thus, papillary muscle-expressed nNOS splice variants are necessary for control levels of myofilament ATPase activity and force generation, but dispensable for myofilament calcium sensitivity. The greater reduction in myofilament ATPase relative to specific force in KN1, but not KN2 muscle, reduced the energy cost of muscle contraction, suggesting that nNOSß increased the energetic efficiency of contraction in the absence of nNOSµ and nNOSα. Analyses of intact KN1 and KN2 papillary muscles showed that both intracellular calcium transients and their evoked force transients were similar to controls at stimulation frequencies between 1 and 3 Hz. Therefore, nNOS was dispensable for baseline excitation-contraction coupling. In summary, these data suggest that nNOS splice variants differentially regulate myofilament function, but not baseline calcium handling in papillary muscles. More importantly, they suggest that nNOSß is a novel modulator of myofilament function, and ultimately the energetic efficiency of cardiac papillary muscle contraction.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Contração Muscular , Miofibrilas/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Músculos Papilares/metabolismo , Adenosina Trifosfatases/química , Processamento Alternativo , Animais , Cálcio da Dieta , Citoplasma/metabolismo , Éxons , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
14.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R721-R729, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897818

RESUMO

Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) has been well defined as an androgen-sensitive transducer mediating skeletal muscle growth in vitro; however, this has yet to be tested in vivo. As such, male mice were subjected to either sham or castration surgery and allowed to recover for 7 wk to induce atrophy of skeletal muscle. Then, castrated mice were implanted with either a control pellet or a pellet that administered rapamycin (~2.5 mg·kg-1·day-1). Seven days postimplant, a subset of castrated mice with control pellets and all castrated mice with rapamycin pellets were given once weekly injections of nandrolone decanoate (ND) to induce muscle growth over a six-week period. Effective blockade of mTORC1 by rapamycin was noted in the skeletal muscle by the inability of insulin to induce phosphorylation of ribosomal S6 kinase 1 70 kDa (Thr389) and uncoordinated-like kinase 1 (Ser757). While castration reduced tibialis anterior (TA) mass, muscle fiber cross-sectional area, and total protein content, ND administration restored these measures to sham levels in a rapamycin-insensitive manner. Similar findings were also observed in the plantaris and soleus, suggesting this rapamycin-insensitive effect was not specific to the TA or fiber type. Androgen-mediated growth was not due to changes in translational capacity. Despite these findings in the limb skeletal muscle, rapamycin completely prevented the ND-mediated growth of the heart. In all, these data indicate that mTORC1 has a limited role in the androgen-mediated growth of the limb skeletal muscle; however, mTORC1 was necessary for androgen-mediated growth of heart muscle.


Assuntos
Anabolizantes/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Decanoato de Nandrolona/farmacologia , Sirolimo/farmacologia , Anabolizantes/administração & dosagem , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Implantes de Medicamento , Injeções Intramusculares , Insulina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Decanoato de Nandrolona/administração & dosagem , Orquiectomia , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/crescimento & desenvolvimento , Músculos Papilares/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem
15.
Toxicol In Vitro ; 51: 106-113, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29772264

RESUMO

Copper is an essential metal for homeostasis and the functioning of living organisms. We investigated the effects of a high copper concentration on the myocardial mechanics, investigating the reactive oxygen species (ROS) mediated effects. The developed force of papillary muscles was reduced after acute exposure to a high copper concentration and was prevented by co-incubation with tempol, DMSO and catalase. The reuptake of calcium by the sarcoplasmic reticulum was reduced by copper and restored by tempol. The contractile response to Ca2+ was reduced and reversed by antioxidants. The response to the ß-adrenergic agonist decreased after exposure to copper and was restored by tempol and catalase. In addition, the in situ detection showed increased O2·- and OH·. Contractions dependent on the sarcolemmal Ca2+ influx were impaired by copper and restored by antioxidants. Myosin-ATPase activity decreased significantly after copper exposure. In conclusion, a high copper concentration can acutely impair myocardial excitation-contraction coupling, reduce the capacity to generate force, reduce the Ca2+ inflow and its reuptake, and reduce myosin-ATPase activity, and these effects are mediated by the local production of O2·-, OH· and H2O2. These toxicity effects of copper overload suggest that copper is a risk factor for cardiovascular disease.


Assuntos
Cobre/toxicidade , Músculos Papilares/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miosinas/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiologia , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
16.
Arch Biochem Biophys ; 648: 27-35, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704484

RESUMO

The C-terminus mobile domain of cTnI (cTnI-MD) is a highly conserved region which stabilizes the actin-cTnI interaction during the diastole. Upon Ca2+-binding to cTnC, cTnI-MD participates in a regulatory switching that involves cTnI to switch from interacting with actin toward interacting with the Ca2+-regulatory domain of cTnC. Despite many studies targeting the cTnI-MD, the role of this region in the length-dependent activation of cardiac contractility is yet to be determined. The present study investigated the functional consequences of losing the entire cTnI-MD in cTnI(1-167) truncation mutant, as it was exchanged for endogenous cTnI in skinned rat papillary muscle fibers. The influence of cTnI-MD truncation on the extent of the N-domain of cTnC hydrophobic cleft opening and the steady-state force as a function of sarcomere length (SL), cross-bridge state, and [Ca2+] was assessed using the simultaneous in situ time-resolved FRET and force measurements at short (1.8 µm) and long (2.2 µm) SLs. Our results show the significant role of cTnI-MD in the length dependent thin filament activation and the coupling between thin and thick filament regulations affected by SL. Our results also suggest that cTnI-MD transmits the effects of SL change to the core of troponin complex.


Assuntos
Miocárdio/metabolismo , Músculos Papilares/fisiologia , Troponina I/química , Troponina I/metabolismo , Animais , Miofibrilas/metabolismo , Músculos Papilares/metabolismo , Domínios Proteicos , Ratos , Ratos Sprague-Dawley
17.
Cardiovasc Res ; 114(5): 656-667, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401264

RESUMO

Aims: The heart is constantly challenged with acute bouts of stretching or overload. Systolic adaptations to these challenges are known but adaptations in diastolic stiffness remain unknown. We evaluated adaptations in myocardial stiffness due to acute stretching and characterized the underlying mechanisms. Methods and results: Left ventricles (LVs) of intact rat hearts, rabbit papillary muscles and myocardial strips from cardiac surgery patients were stretched. After stretching, there was a sustained >40% decrease in end-diastolic pressure (EDP) or passive tension (PT) for 15 min in all species and experimental preparations. Stretching by volume loading in volunteers and cardiac surgery patients resulted in E/E' and EDP decreases, respectively, after sustained stretching. Stretched samples had increased myocardial cGMP levels, increased phosphorylated vasodilator-stimulated phosphoprotein phosphorylation, as well as, increased titin phosphorylation, which was reduced by prior protein kinase G (PKG) inhibition (PKGi). Skinned cardiomyocytes from stretched and non-stretched myocardia were studied. Skinned cardiomyocytes from stretched hearts showed decreased PT, which was abrogated by protein phosphatase incubation; whereas those from non-stretched hearts decreased PT after PKG incubation. Pharmacological studies assessed the role of nitric oxide (NO) and natriuretic peptides (NPs). PT decay after stretching was significantly reduced by combined NP antagonism, NO synthase inhibition and NO scavenging, or by PKGi. Response to stretching was remarkably reduced in a rat model of LV hypertrophy, which also failed to increase titin phosphorylation. Conclusions: We describe and translate to human physiology a novel adaptive mechanism, partly mediated by titin phosphorylation through cGMP-PKG signalling, whereby myocardial compliance increases in response to acute stretching. This mechanism may not function in the hypertrophic heart.


Assuntos
Hipertrofia Ventricular Esquerda/metabolismo , Mecanorreceptores/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Complacência (Medida de Distensibilidade) , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Masculino , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/patologia , Músculos Papilares/fisiopatologia , Fosfoproteínas/metabolismo , Fosforilação , Coelhos , Ratos Wistar , Sistemas do Segundo Mensageiro , Pressão Ventricular
18.
Arq. bras. cardiol ; 109(5): 432-439, Nov. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-887955

RESUMO

Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each): control (C; standard diet) and high-fat diet (HF, unsaturated high-fat diet). The initial moment of obesity was defined by weekly measurement of body weight (BW) complemented by adiposity index (AI). Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%), body fat (20%), AI (14.5%), insulin levels (39.7%), leptin (62.4%) and low-density lipoprotein cholesterol (15.5%) but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05). In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.


Resumo Fundamentos: Diferentes tipos de dietas hiperlipídicas e/ou hipercalóricas têm sido usados para induzir obesidade em roedores. No entanto, poucos estudos relataram os efeitos da obesidade induzida por dieta hiperlipídica em sua fase inicial sobre a remodelação cardíaca funcional e estrutural. Objetivo: Caracterizar o momento inicial da obesidade e investigar parâmetros metabólicos e cardíacos. Além disso, analisar o papel do trânsito de Ca+2 em curtos períodos de exposição à obesidade. Métodos: Ratos Wistar com idade de 30 dias foram distribuídos aleatoriamente em dois grupos (n = 19 em cada grupo): controle (C, dieta padrão) e dieta hiperlipídica (HL, dieta rica em gordura insaturada). O momento inicial da obesidade foi definido por medidas semanais do peso corporal, complementadas pelo índice de adiposidade (IA). A remodelação cardíaca foi avaliada por análise morfológica, histológica, ecocardiográfica e funcional dos músculos papilares. Proteínas envolvidas no trânsito de Ca2+ foram determinadas por Western Blot. Resultados: O momento inicial da obesidade ocorreu na terceira semana. Em comparação aos ratos C, os animais HL apresentaram maior peso corporal final (4%), gordura corporal (20%), IA (14,5%), níveis de insulina (39,7%), leptina (62,4%) e lipoproteína de baixa densidade (15,5%), mas não apresentaram alterações na pressão sistólica. A avaliação ecocardiográfica não mostrou alterações nos parâmetros cardíacos. No grupo HL, observou-se um aumento no +dT/dt (C: 52,6 ± 9,0 g/mm2/s e HL: 68,0 ± 17,0 g/mm2/s; p < 0,05) muscular. Além disso, não houve alterações na expressão cardíaca de proteínas envolvidas no trânsito de Ca2+. Conclusão: O momento inicial da obesidade promove alterações nos perfis hormonais e lipídicos sem causar danos cardíacos ou mudanças no trânsito de Ca2+.


Assuntos
Animais , Masculino , Ratos , Músculos Papilares/fisiopatologia , Cálcio/metabolismo , Comportamento Sedentário , Dieta Hiperlipídica , Obesidade/fisiopatologia , Obesidade/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Pressão Sanguínea , Resistência à Insulina , Distribuição Aleatória , Western Blotting , Ratos Wistar , Modelos Animais de Doenças , Obesidade/etiologia , Obesidade/patologia
19.
Arq Bras Cardiol ; 109(5): 432-439, 2017 Nov.
Artigo em Inglês, Português | MEDLINE | ID: mdl-29069204

RESUMO

BACKGROUND: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. OBJECTIVE: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. METHODS: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each): control (C; standard diet) and high-fat diet (HF, unsaturated high-fat diet). The initial moment of obesity was defined by weekly measurement of body weight (BW) complemented by adiposity index (AI). Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. RESULTS: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%), body fat (20%), AI (14.5%), insulin levels (39.7%), leptin (62.4%) and low-density lipoprotein cholesterol (15.5%) but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05). In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. CONCLUSION: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.


Assuntos
Cálcio/metabolismo , Dieta Hiperlipídica , Obesidade/metabolismo , Obesidade/fisiopatologia , Músculos Papilares/fisiopatologia , Comportamento Sedentário , Animais , Pressão Sanguínea , Western Blotting , Modelos Animais de Doenças , Resistência à Insulina , Masculino , Obesidade/etiologia , Obesidade/patologia , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Distribuição Aleatória , Ratos , Ratos Wistar
20.
Physiol Res ; 66(6): 925-932, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28937259

RESUMO

Our aim was to evaluate whether endothelial overexpressing of the bradykinin B1 receptor could be associated with altered left ventricular and myocardial performance. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function in Sprague Dawley transgenic rats overexpressing the endothelial bradykinin B1 receptor (Tie2B1 rats). The myocardial inotropism was evaluated on papillary muscles contracting in vitro. In Tie2B1 animals, an enlarged left ventricular cavity and lower fractional shortening coupled with a lower rate of pressure change values indicated depressed left ventricular performance. Papillary muscle mechanics revealed that both Tie2B1 and wild-type rat groups had the same contractile capacities under basal conditions; however, in transgenic animals, there was accentuated inotropism due to post-pause potentiation. Following treatment with the Arg(9)-BK agonist, Tie2B1 papillary muscles displayed a reduction in myocardial inotropism. Endothelial B1 receptor overexpression has expanded the LV cavity and worsened its function. There was an exacerbated response of papillary muscle in vitro to a prolonged resting pause, and the use of a B1 receptor agonist impairs myocardial inotropism.


Assuntos
Células Endoteliais/metabolismo , Contração Miocárdica , Músculos Papilares/metabolismo , Receptor B1 da Bradicinina/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Animais , Predisposição Genética para Doença , Masculino , Músculos Papilares/fisiopatologia , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor B1 da Bradicinina/genética , Regulação para Cima , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...